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Abstract. For each standard ‘diffraction catastrophe’ wavefunction @, describing the 
interference pattern near a stable caustic, we derive two nonlinear identities. These relate 
the intensity I@/’ to an integral over the wavefunction @ corresponding to the same 
catastrophe, or to a less singular one. The identities are interpreted in terms of projections 
of Wigner functions from phase space onto coordinate space. 

1. Introduction 

Diffraction near a smooth caustic in the plane, or near a smooth caustic surface in space, 
is described by a function derived by Airy (1838). In modern notation (Abramowitz 
and Stegun 1964) the Airy function is 

Ai(C) = J d S  exp[i($S3 + CS)], 
2 7  -m 

where C is a coordinate measuring distance from the caustic. A i ( C )  satisfies a 
surprising nonlinear relation, obtained by Balazs and Zipfel (1973) and Berry (1977a) 
by projecting a quantum-mechanical Wigner function from phase space onto coor- 
dinate space. This ‘projection identity’ is 

Ai2 (C) = 1“ du Ai (22’3(C+u2)). (2) 
7 -m 

Our purpose here is to obtain two series of projection identities which constitute the 
generalisations of equation (2) for more complicated caustics. The corresponding 
wavefunctions I)  (generalisations of the Airy function) are the ‘diffraction 
catastrophes’, constructed according to a rule described in § 2. Each projection identity 
relates a wave intensity to an integral over a wavefunction $. The method for 
generating them is explained in § 2. Explicit results for cuspoid and umbilic caustics are 
presented in 0 3 and § 4 respectively. A quantum-mechanical argument, showing how 
the identities can be interpreted in terms of wavefunctions and Wigner functions 
associated with a smooth manifold in phase space, is given in 0 5 .  Their detailed 
implications for Wigner functions are discussed in § 6. 

t Present address: Department of Applied Mathematics, Queen Mary College, Mile End Road, London E l  
4NS. 
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2. Projection identity formalism 

The stable caustics of a family of trajectories can be classified in terms of catastrophe 
theory (Poston and Stewart 1978). On a fine scale, each type of caustic has its 
characteristic short-wave interference pattern which can be mapped locally onto the 
canonical 'diffractiqn catastrophe' wavefunction $/(Ci). Here 1 is a label for the 
catastrophe (fold, cusp, elliptic umbilic, etc) and C, (1  =z j =z K )  denotes the control 
parameters on which rc/ depends (e.g. position coordinates or time); the number K is the 
codimension of 1. The are obtained from the generating polynomials 4,(&; Cj)  for 
the catastrophes, involving state variables s k  (1  S k =z n )  as well as the Ci; the number n 
is the corank of I ,  and satisfies n a 2  if K s 5 .  In terms of 41, the Ith diffraction 
catastrophe has the integral representation (Berry 1976, Duistermaat 1974, Guillemin 
and Sternberg 1977) 

These diffraction catastrophes generalise the Airy function of equation (l), which 
corresponds to the simplest case where K = n = 1 ('fold' catastrophe). 

In deriving the projection identities, the first step is to write the wave intensity as 

Under the transformation 

which has Jacobian 2", this can be written in either of two forms, depending on the order 
in which the integrations over uk and u k  are performed. We introduce the notation 

@'1(uk, V k  ; cj) E 4 / (uk  -t u k  ; cj) - 4I(uk - v k  ; cj), (6) 

and note that @ I  is an odd function of Uk. 

Then the two forms for 1rc/112 can be written as follows: 

(7) 
m 

IT -m -m (2T)n'2 -m -m 

1 n / 2  m 

I$'1(ci))2 = (2) I . . . Jm dnuk( - . , , 1 dnUk ei@l(Kk*uk ;c , )  

and 

The two sets of identities, which we shall call the 'U' and 'U' identities, are 
determined by equations (7) and (8) respectively. To derive them, it is necessary to 
evaluate the functions {. . .}, using explicit forms for the generating polynomials r#q. This 
is a straightforward but tedious exercise, which, however, has the remarkable result that 
the functions {. . .} can be expressed in terms of particular sections through the 
diffraction catastrophe &, or in terms of a diffraction catastrophe of lower codimension, 
or in terms of powers and exponentials of u k  or uk.  
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3. Cuspoids 

These have corank n = 1, and hence a single state variable S, and can be labelled by their 
codimension K. The generating polynomials are 

Both the u and v identities take different forms when K is even or odd. 
When K is odd, the u identities are 

where $K is the diffraction catastrophe (3)  with 4 given by (9), and 

( 1 1 )  

2 ( K + l - Z m ) / ( K + 2 )  j-1-2m ( K + 1 ) !  u K + i - 2 m +  f C j ( j - l ) ! u  
(2m)!  ( ( K  + 1 -2m)!  j=2m+l ( j - 1 - 2 ~ 1 ) !  &m+l= 

for 0 s  m S;(K - 11, 

&m+2 = 0 for O s m s ; ( K - 3 ) .  

When K is even, the range of integration in the u identities must be reduced to u 2 0 
so that the fractional powers of U are well defined, which leads to a distinction between 
odd and even control parameters Cj:  

where 

&m+2 = 0 f o r O s m s i ( K - 4 ) .  

All the v identities require that the range of integration be reduced to v 3 0. This is 
facilitated by the v antisymmetry of c P ~ ( u ,  U ;  Cj)  and gives 

where for K odd, 

for O S  m s$(K -3),  
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and for K even, 

for O s m s & K - 4 ) .  

To illustrate these general results we write explicit formulae for K = 1 (fold), K = 2 
(cusp) and K = 3 (swallowtail). For K = 1, the U and v identities are 

l$foid(ci) /2  = \/p21'3 1: du $ ~ o I ~ C ~ ~ / ~ ( U ~  + Ci)] (19) 

and 

These relations involve $fold, which is simply ( 2 ~ ) ~ "  times the Airy function (1). The U 

identity (19) is the original relation (2) which we are generalising. In deriving (20) we 
used the 'zero-order' (non-catastrophic) extrapolation of (3) and (9) in the form 
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and 

4. Umbilics 

These have corank n = 2, and hence two state variables S1 and Sz .  We present results 
only for the first two cases, which both have codimension K = 3, namely the elliptic (E) 
and hyperbolic (H) umbilics. 

For the elliptic umbilic, the generating function is 

+E(S1, SZ; c1, CZ, ~3)=s~-3s1s~-~3( s~~s~) -~ l s l -~2s2 ,  (26) 
and the diffraction catastrophe is the function $E(c1, C2, C3) studied in detail by Berry 
et a1 (1979). The u identity is 

I $ E ( ~ I ,  cz, c3)12=-1 dui 1 dUz $ E { ~ ~ ’ ~ [ C I + ~ C ~ ~ I  
2113 m m 

T -m -m 

+ 3 ( ~ : -  U;)], 2 2 / 3 ( C 2 + 2 C 3 ~ 2 + 6 ~ 1 ~ 2 ) ,  0). (27) 
This can be rewritten in terms of Ai and the irregular Airy function Bi (Abramowitz and 
Stegun 1964) by using the relation (Berry et a1 1979, Trinkaus and Drepper 1977) 

2 2/3  

&(A, B, 0) = (i) 7~ Re (28) 

which gives 

l$E(cl, c 2 ,  C3)12 
m Z l r  2 

= v R e  Jo u du Jo dB Ai[3-1/3(-C1-iC~-2C3u 

xBi  [3-1/3(-Cl+iC2-2C3u e - i e + 3 ~ 2  e’’@)]. 

The o identity is 

It,bE(c1, cz, c3)12 =G Jo do 1 dB c0s[2v3 COS 319 
lr 1 “  

0 
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This can be rewritten in terms of Airy functions using the easily derived relation 

J/H(A, B, 0) = (2~/3”’) Ai (-3-ll3A) Ai (-3-”3B), (33) 

W 

du2 Ai[($)’/3(3u:+ C 3 ~ 2 -  Cl)] Ai[($)’/3(3uq+ C3u1- G)]. (34) 

5. Phase-space interpretation 

Consider a family of classical trajectories in an n-dimensional coordinate space q, 
represented by a smooth n-dimensional manifold % in the 2n-dimensional phase space 
q, p. We are interested in families of trajectories with caustics, so that there are several 
momenta pi (q )  for each q, and 8 is folded over q (figure 1). 

Associated with 8 is a semiclassical quantum state whose coordinate wavefunction 
will be denoted by J / (q ) .  A ‘WKB’ approximation to J / ( q ) ,  constructed out of local 
plane-wave contributions from each pi(q), fails on caustics, where two or more pi 
coalesce and the contributions diverge. It was realised by Maslov (1972) that, because 

q- 

Figure 1. Manifold 0 of classical trajectories, leading to formulae for the coordinate and 
momentum wavefunctions and the Wigner function. 



Projection identities for diffraction catastrophes 155 

8 is smooth, those regions giving caustics in q cannot be folded over p .  Therefore q is 
locally a single-valued function of p ,  and the WKB method can be used to give a 
satisfactory approximation to the momentum wavefunction &p). In the case where 
trajectories on 8 are distributed uniformly in momentum, this approximation is 

where A and po are constant. The desired approximate wavefunction $ ( q )  can now be 
obtained by a Fourier transformation: 

q(q)  = Ah-"'2 / dp exp[ :( - / q (p') . dp' + q . p )  1. 
PO 

(371 

An alternative procedure is to employ $ ( p )  to construct the phase-space quantum 
function of Wigner (1932). This is 

Wigner's function has the property that under projection alongp it gives the coordinate 
probability density 

Using approximation (37) for $(q ) ,  and approximations (36) and (38) for W(4,  p ) ,  
the Wigner projection identity becomes 

= (L)" ' 2 /dp (h - " /2 [dPexp  r h  

This is an exact relation between two semiclassical approximations. The 'Maslov' and 
'Wigner' routes leading respectively to the left and right members of this equation are 
shown schematically in figure 1. 

Obviously the identity (40) resembles the diffraction catastrophe projection iden- 
tities (7) and (8). To make the connection precise, we use the fact that the folded parts 
of 8 are locally equivalent under diffeomorphism to the 'critical manifold' (Poston and 
Stewart 1978) of one of the catastrophes. Therefore the phase in the Maslov wave- 
function (37) can be mapped onto the corresponding catastrophe generating poly- 
nomial. The components of momentump then correspond to the state variables. After 
scaling away h (which is non-trivial-see Varchenko 1976, Berry 1977b), $ ( q )  becomes 
one of the diffraction catastrophes (3), with control parameters consisting of the 
components of 4 together with any other quantities (e.g. time or energy) on which 4 
depends. If the P and p integrations in (40) are carried out in the order indicated, the 
result is the U identity (7); interchanging the order of integration gives the z, identity (8). 
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6. Wigner catastrophes 

It follows from 8 5 that the integrand of each u projection identity represents a Wigner 
function in the phase space whose momentum variables are u (cuspoids) or u l ,  uz  
(umbilics) and whose coordinate variables are C1 (cuspoids) or C1, CZ (umbilics), and 
for which any remaining C, are extra parameters (e.g. energy or time). As can be seen 
from equations (lo),  (12), (19), (22), (24), (27) and (32), these Wigner functions, which 
project to give the intensities of diffraction catastrophes, are themselves given by 
particular hypersections (i.e. restrictions to lower-dimensional subsets of control space) 
of particular diffraction catastrophes (uniquely up to change of integration variable); 
therefore we call them ‘Wigner catastrophes’. Because Wigner functions must be real 
(equation (38)), the hypersections must be those on which the diffraction catastrophes 
are real, implying that only those diffraction catastrophes possessing real hypersections 
can occur as Wigner catastrophes. 

First we consider the cuspoids. The diffraction catastrophe intensities for cuspoids 
of codimension K = 2m + 1 and K = 2m + 2  are both generated by projecting the 
Wigner catastrophe with K = 2m + 1. This is because only cuspoid diffraction catas- 
trophes of odd codimension possess a real hypersection, obtained by setting all even 
controls C2,,, equal to zero. This real hypersection intersects the diffraction catastrophe 
caustic in several branches, on which an even number of stationary phase points (SPPS) 
of the integrand of (3) coalesce. The form (9) of the generating polynomial q5K shows 
that there is always one and only one branch, given by C1 = 0, on every point of which 
(apart from a set of zero measure) just one pair of SPPS coalesces, corresponding locally 
to a simple fold catastrophe. In addition there may also be branches on which SPPS 
coalesce in two or more separate pairs, corresponding to self-intersections of the 
caustic. Finally, there may be branches on which four or more SPPS coalesce, cor- 
responding locally to swallowtail or higher catastrophes. 

Equations (11) and (13) define maps M between the canonical controls 6 of the 
catastrophes, and the phpse-space variables U ,  C1 and extra parameters CIa2. These 
map real hypersections of diffraction catastrophes onto Wigner catastrophes. Berry 
(1977a) showed that, on the classical phase-space manifold 8 of a system with one 
degree of freedom (such as we are considering here), a single pair of SPPS coalesces. This 
shows that 8 is the image under M of the fold caustic of the diffraction catastrophe; the 
equation of this fold in canonical coordinates is &(U; C,) = 0. Then both (11) and (13) 
imply that its image in phase space has the equation 

(41) 

where II,bK(C,)IZ is the diffraction catastrophe onto which the Wigner catastrophe 
projects. Therefore the projection identities generate Wigner functions whose classical 
manifolds are exactly the catastrophe manifolds of the t,bK(C,). 

The other branches of the caustics in the real hypersections, where two or more 
separate pairs of SPPS coalesce, map into those lines of the Wigner catastrophes that 
were labelled 2 by Berry (1977a). On 2, the strength of the Wigner function is high but 
its sign alternates, so that its projection is weak and is not a caustic of I,bK(C,). This 
behaviour constrasts with 8, on which the sign of the Wigner function remains positive 
and which does project onto a caustic of t,b~(C,). 

Now we consider in detail equations (19), (22) and (24) which give the Wigner 
catastrophes W(C1, U ;  C,s2) projecting onto the fold, cusp and swallowtail respec- 
tively. In the first case, equation (19) shows that the fold diffraction intensity is 

a 4 K ( u  ; c / ) / a u  = 0, 
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projected from 

w(cl, U )  = (21/6/ . / .n)~f01d[22/3(Uz + cl)]. (42) 
This is another fold diffraction function whose classical manifold 8, given by &(U ; Cl) = 
0, is the parabola u 2  + CI = 0; there are parabolic Airy fringes on the concave side of 8. 

The Wigner catastrophe that projects onto a cusp is obtained by the transformation 
of (22) as 

(43) 
The classical manifold 8 given by &(U; C1, C2) = 0 is u 3  + C ~ U  + C1 = 0, which is the 
cusp catastrophe manifold. It is surprising that merely by distorting a fold diffraction 
catastrophe it can be made to project into the more complicated cusp intensity pattern. 
There are Airy fringes between 8 and U = 0 on the concave sides of 8. These are 
sketched in figure 2 for a case where C2 < 0. Approaching the singular line U = 0, the 
fringes tend to zero spacing and infinite strength in such a way that the average value of 
W is small. This singular behaviour exemplifies those cases where 8 is antisymmetric 
about its inflections (as in equation (5.13) of Berry 1977a), giving rise to a ‘catastrophe 
of infinite order’ where the line 2 condenses onto a single point (U = C1= 0 in this case) 
on 8. 

W(C1, U ;  Cz) = (2/.rr)1’2(6~u~)-1~31)~01d[2 sgn ~ ( 6 l u l ) - ’ / ~ ( u ~ +  C2u + Cl)]. 

Figure 2. Fringes (thin lines) of the Wigner catastrophe around a cubic classical manifold 
(bold curve) for C, < 0. 

The Wigner catastrophe that projects onto a swallowtail is, from (24), 

w(cl, U ;  c2, c,) = (2/.rr)1/22-1/5 

x I ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ [ ~ ~ / ~ ( u ~ + C ~ U ~ + C ~ U  +C2), 0,  22/5(6~2+C3)] .  (44) 

This involves the real hypersection qbswallowtail((l, 0, .f3) whose caustic, shown in figure 3, 
has two branches. 

On the first branch, t1 = 0, a single pair of SPPS coalesces. This maps under M onto 
the classical manifold 8 given by 

U + c, U + C 2 U  + c1= 0, (45) 
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Figure 3. The real section (& = 0) through the swallowtail caustic in canonical coordinates 
(51, 52.9  53). 

which is exactly the swallowtail catastrophe manifold. On the second branch, whose 
equation is 

& < o ,  (46) 5 -1 2 
1 - 453, 

the SPPS coalesce in two separate pairs. Under M this branch (which can occur only if 
C3 < 0) maps onto the line 9 of Berry (1977a), given by 

3 2 ~  + 8 C ~ U  - 4C2u + C: - 4 C1= 0, 6 U + C3 < 0. (47 1 
This line 9 joins the two inflections (swallowtail points) of 8. If C2 = 0 , s  is symmetric 
(as shown on figure 4 of Berry (1977a) with p and q interchanged). An asymmetric 
version with C2 > 0 is shown in figure 4; points near the three maxima of 8 and 2? as a 
function of C1 always share a common tangent, as they must by the chord construction 
of Berry (1977a). 

Analysis of the Wigner catastrophes projecting into the higher cuspoids is compli- 
cated by the large number of controls CjS2 in addition to the phase-space variables 
C1, U. We mention only the fact that beyond the swallowtail the next diffraction 
catastrophe with a real hypersection has codimension five and organises six SPPS, 

suggesting that this catastrophe could describe the Wigner function near cusps of 9 (as 
illustrated in figure 2 of Berry (1977a)). 

Finally, we briefly consider the umbilics, which can occur only in systems with at 
least two degrees of freedom. According to equation (27), the Wigner catastrophe 
projecting onto the elliptic umbilic is the real section t3 = 0 of the elliptic umbilic 
diffraction catastrophe itself. In this section the caustic is the single point & = r2 = 0 at 
which all four SPPS coalesce. This point maps under M into a classical 2-manifold 
(labelled 9 by Berry 1977a) in the four-dimensional phase space with variables C1, C2, 
ul, u2 (together with C3 as extra parameter). 9 has equations 

(48) 
corresponding precisely to the elliptic umbilic catastrophe manifold. In this Wigner 
catastrophe, 9 is decorated by Airy-like fringes (cf equation (28)), and there are no 
9- type branches. 

3(u; - U ;) - 2C3u 1 - c1= 0, -6 U 1 ~ 2  - 2 C3 ~2 - C2 = 0, 
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Figure 4. The classical manifold I and catastrophe line P (broken curve) of a swallowtail 
Wigner Catastrophe, for C,>O, C3<0.  ‘T’ is the common tangent with equation C ,  = 
ic: - c,u. 

According to equation (29), the Wigner catastrophe projecting onto the hyperbolic 
umbilic is the real section e3 = 0 of the hyperbolic umbilic diffraction catastrophe itself. 
In this section the caustic consists of the single point & = r2 = 0 at which all four SPPS 
coalesce, together with the two half-lines & = 0, 5 2  > 0 and t2 = 0, 61 > 0 on which the 
SPPS coalesce in two separate pairs. The point & = t 2 = 0  maps under M into the 
classical manifold .T identical to the hyperbolic umbilic catastrophe manifold, again 
decorated with Airy fringes (cf equation (33)). The two half-lines map into two 
three-dimensional regions in phase space (for fixed C3), which are the generalisations of 
the catastrophe lines 3 for the cuspoids. 

7. Concluding remarks 

The projection identities advance our rather meagre knowledge of the hierarchy of new 
wavefunctions represented by the diffraction catastrophes (3), and also of the cor- 
responding Wigner catastrophes in phase space. They show how the wavefunction 
density I&12, near a caustic equivalent to a catastrophe labelled 1, is determined by a 
Wigner function which is a distorted version of either the wavefunction &, correspond- 
ing to a less singular catastrophe l’, or a special section through the wavefunction & 
itself. 

One way of generalising our analysis would be to employ a general rotation of axes 
in the Sk, S l  space, instead of the special rotation in equation (3). This would generate 
continuous families of projection identities, but preliminary study shows that these are 
very complicated, even for the simplest catastrophes. 

Another extension would be to calculate the identities for the higher catastrophes 
on the list of Arnol’d (1975). The integrals for those catastrophes involving ‘modality’ 
might present difficult convergence problems. 
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